

Semantic discovery of resources in cloud-based PACS/RIS systems

Rafael Berlanga¹, <u>María Pérez</u>¹, Lledó Museros¹ and Rafael Forcada²

- ¹ Universitat Jaume I, Castellón, Spain
- ² ActualMed, Castellón, Spain

PACS/RIS systems

Image communications between individual components, such as archive systems, diagnostic workstations, ... Radiology workflow such as creation of orders, scheduling, reading, reporting, medical coding, ...

PACS/RIS systems

PACS/RIS systems

Storage of huge amounts of medical reports and images with different formats

Delivery of better, more secure and less expensive medical imaging services

Cloud-based PACS/RIS systems

Retrieval in current PACS/RIS systems

Retrieval in current PACS/RIS systems

• More precise user's requirements specification

- More precise user's requirements specification
- Multilingual and multimodal retrieval

- More precise user's requirements specification
- Multilingual and multimodal retrieval
- Semantic retrieval

- More precise user's requirements specification
- Multilingual and multimodal retrieval
- Semantic retrieval
- Automatic classification of cases

- More precise user's requirements specification
- Multilingual and multimodal retrieval
- Semantic retrieval
- Automatic classification of cases
- External queries

Our Proposal

Semantic annotation allows the system to summarize the knowledge stored in clinical reports as well as images in terms of a reference ontology

Our Proposal

Data Processing

- •DICOM metadata: technical information of the image and information about the patient
- •Clinical reports: Low structured information expressed in free-text

Data Processing

- •DICOM metadata: technical information of the image and information about the patient
- •Clinical reports: Low structured information expressed in free-text

Search by the patient identifier and simple keyword searches over some data fields

Data Processing

- •DICOM metadata: technical information of the image and information about the patient
- •Clinical reports: Low structured information expressed in free-text

Search by the patient identifier and simple keyword searches over some data fields

Semantic annotation to process and integrate all the data stored in a cloud-based PACS/RIS system

A semantic annotation is a mapping between a text chunk identified in a text and concepts described in a knowledge resource (KR)

A semantic annotation is a mapping between a text chunk identified in a text and concepts described in a knowledge resource (KR)

Biomedical knowledge resources: UMLS, MeSH, RadLex...

A semantic annotation is a mapping between a text chunk identified in a text and concepts described in a knowledge resource (KR)

Features:

- Based on concept retrieval
- Automatic and unsupervised
- Easy to parameterize
- High recall
- Simultaneous use of several KRs
- Multilingual

A semantic annotation is a mapping between a text chunk identified in a text and concepts described in a knowledge resource (KR)

Features:

- Based on concept retrieval
- Automatic and unsupervised
- Easy to parameterize
- High recall
- Simultaneous use of several KRs
- Multilingual

"Conclusión: Discreto <_{C125396} derrame articular> y <_{C2609134} focos de edema óseo>

A semantic annotation is a mapping between a text chunk identified in a text and concepts described in a knowledge resource (KR)

Features:

- Based on concept retrieval
- Automatic and unsupervised
- Easy to parameterize
- High recall
- Simultaneous use of several KRs
- Multilingual

Semantic annotation of all the data suitable for querying: images metadata, clinical reports and even external resources.

A semantic annotation is a mapping between a text chunk identified in a text and concepts described in a knowledge resource (KR)

Features:

- Based on concept retrieval
- Automatic and unsupervised
- Easy to parameterize
- High recall
- Simultaneous use of several KRs
- Multilingual

Semantic annotation of all the data suitable for querying: images metadata, clinical reports and even external resources.

Semantic Index

A semantic annotation is a mapping between a text chunk identified in a text and

concepts described in a knowledge resource (KR)

Features:

- Based on concept retrieval
- Automatic and unsupervised
- Easy to parameterize
- High recall
- Simultaneous use of several KRs
- Multilingual

Vocabulary heterogeneity

Multi-linguality

Characterization of resources

Navigation through the concepts relationships

Integration of different types of resources

Semantic annotation of all the data suitable for querying: images metadata, clinical reports and even external resources.

Semantic Index

Retrieval: Similarity between the semantic representations of the query and the resources

$$sim(r_1,r_2)$$
 α $sim(r_1^{KR},r_2^{KR})$

Retrieval: Similarity between the semantic representations of the query and the resources

$$sim(r_1,r_2)$$
 α $sim(r_1^{KR},r_2^{KR})$

Relevance of concepts

Retrieval: Similarity between the semantic representations of the query and the resources

$$sim(r_1,r_2)$$
 α $sim(r_1^{KR},r_2^{KR})$

Relevance of concepts

$$1 \quad sim(r_1^{KR}, r_2^{KR}) = \frac{r_1^{KR} \cdot r_2^{KR}}{\|r_1^{KR}\| \|r_2^{KR}\|}$$

Retrieval: Similarity between the semantic representations of the query and the resources

$$sim(r_1,r_2)$$
 α $sim(r_1^{KR},r_2^{KR})$

Relevance of concepts

$$1 \quad sim(r_1^{KR}, r_2^{KR}) = \frac{r_1^{KR} \cdot r_2^{KR}}{\|r_1^{KR}\| \|r_2^{KR}\|}$$

$$2 sim(r_1^{KR}, r_2^{KR}) = \prod_{c_i \in r_1^{KR}} \sum_{t_k \in T} p(c_i | t_k) \cdot p(t_k | r_2^{KR})$$

Preliminary Results

Subset of the reports and images stored in ActualMed PACS (>50,000 resources April 2013)

Experiments subset:

- 8088 reports associated with medical images
 - •730 Doppler images, 4320 ecographies and 4145 MRN
- Metadata of 5893 DICOM images

Preliminary Results

DICOM field	Frequency
StudyDescription	4458
AnatomicStructure	0
AnatomicRegion	0
BodyPartExamined	1092
TherapyType	0
TherapyDescription	0
InterventionDescription	0
Type of Patient	0
PatientGroupLength	0
Allergies	0
PatientBirthDate	5893
PatientSex	5893
PatientWeight	1852
Total DICOM files	5893

Semantic Annotation-Preliminary Results

Knowledge resource: UMLS (version 2012AB). English and Spanish for a subset of entries

Report set	Annot.	Annotations Avg. Size	Ambiguity
Doppler	14991	1.7	0.9%
Ecographies	60598	1.5	18.6%
MRN	65358	1.6	10.0%
All	140947	1.6	12.9%

Semantic Annotation-Preliminary Results

Knowledge resource: UMLS (version 2012AB). English and Spanish for a subset of entries

Report set	Annot.	Annotations Avg. Size	Ambiguity	Semantic Vectors	Anatomy	Disorders	Phys. Features
Doppler	14991	1.7	0.9%	673	673	673	673
Ecographies	60598	1.5	18.6%	4320	4317	4276	1356
MRN	65358	1.6	10.0%	3094	3093	3094	1157
All	140947	1.6	12.9%	8087	8083	8043	3186

Semantic Annotation-Preliminary Results Top-ranked concepts for semantic facets

Anatomy	Disorders	Physical Features
Body 6791	Injuries 3906	Sex 1348
Lien 1877	Malign neoplasm T1 2027	Bone densities 1348
Spleen 1877	Effusion into joint 1746	Projection 726
Bone 1784	Rupture 1618	Fluid pressure 655
Kidney 1721	Abnormal degeneration 1518	Liver size 335
Biliary tract 1686	Abnormal dilation 1244	Age 317
Liver 1569	Normal size breast 1148	Kidney feature 311
Collum femoris 1442	Changes nail 1012	Kidney size 151
Tendon 1398	Degenerated invertebral disc 829	Body height 48
Abdominal aorta 1365	Bulging 816	Normal muscle function 46
Lumbar vertebra 1250	Hernia nucleus pulposus 774	Acoustic shadowing 26
Lumbar spine 1248	Calculoses 657	Appearance of anterior chamber 15
Conus medullaries 1160	Abnormal narrowing 647	Edema grade 10
Total=1442	Total=1256	Total=95

Semantic Annotation-Preliminary Results Most frequent clusters in left knee MRN

Anatomy	Disorders	Number of Reports
Anterior horn	Abnormal degeneration	65
Entire medial meniscus	Abnormal degeneration	60
Entire lateral meniscus	Rupture	35
Anterior horn	Laceration	31
Anterior horn	Rupture	26
Region of bone	Effusion into joint	26
Bursa	Augmentation of size	21
Bursa	Benign cystic mucinous tumor	20
Entire medial meniscus	Cartilage tear in knee	20
Soft tissues	Dropsy	19
Anterior horn	Cartilage tear in knee	19
Bursa	Effusion into joint	16
Entire lateral meniscus	Abnormal degeneration	16
Articular	Effusion	13

Preliminary Results

Automatic semantic annotation can produce good enough results to perform classification and retrieval tasks over the resulting semantic vectors

Issues and Challenges

Task 1: Clustering of all clinical reports. Useful to identify groups of similar cases and groups of similar images with similar contexts.

- Task 1: Clustering of all clinical reports. Useful to identify groups of similar cases and groups of similar images with similar contexts.
- Task 2: Extract interesting patterns from images and the associate metadata.

- Task 1: Clustering of all clinical reports. Useful to identify groups of similar cases and groups of similar images with similar contexts.
- Task 2: Extract interesting patterns from images and the associate metadata.
- Task 3: Semantic retrieval of cases given a free-text query or a selected case.

- Task 1: Clustering of all clinical reports. Useful to identify groups of similar cases and groups of similar images with similar contexts.
- Task 2: Extract interesting patterns from images and the associate metadata.
- Task 3: Semantic retrieval of cases given a free-text query or a selected case.
- Task 4: Semantic retrieval outside the PACS/RIS. Queries to external on-line resources such as PubMed, Wikipedia or WikiRadiography.

- Task 1: Clustering of all clinical reports. Useful to identify groups of similar cases and groups of similar images with similar contexts.
- Task 2: Extract interesting patterns from images and the associate metadata.
- Task 3: Semantic retrieval of cases given a free-text query or a selected case.
- Task 4: Semantic retrieval outside the PACS/RIS. Queries to external on-line resources such as PubMed, Wikipedia or WikiRadiography.

More precise annotations to consider the right sense of the annotation

- Task 1: Clustering of all clinical reports. Useful to identify groups of similar cases and groups of similar images with similar contexts.
- Task 2: Extract interesting patterns from images and the associate metadata.
- Task 3: Semantic retrieval of cases given a free-text query or a selected case.
- Task 4: Semantic retrieval outside the PACS/RIS. Queries to external on-line resources such as PubMed, Wikipedia or WikiRadiography.

More precise annotations to consider the right sense of the annotation

"do not present <_c injuries>"

- Task 1: Clustering of all clinical reports. Useful to identify groups of similar cases and groups of similar images with similar contexts.
- Task 2: Extract interesting patterns from images and the associate metadata.
- Task 3: Semantic retrieval of cases given a free-text query or a selected case.
- Task 4: Semantic retrieval outside the PACS/RIS. Queries to external on-line resources such as PubMed, Wikipedia or WikiRadiography.

More precise annotations to consider the right sense of the annotation

"do not present <_c injuries>"

Relationship between the semantic annotations

- Task 1: Clustering of all clinical reports. Useful to identify groups of similar cases and groups of similar images with similar contexts.
- Task 2: Extract interesting patterns from images and the associate metadata.
- Task 3: Semantic retrieval of cases given a free-text query or a selected case.
- Task 4: Semantic retrieval outside the PACS/RIS. Queries to external on-line resources such as PubMed, Wikipedia or WikiRadiography.

More precise annotations to consider the right sense of the annotation

"do not present < c injuries>"

Relationship between the semantic annotations

"retrieve images related to injuries in the tendon"

Conclusions

Semantic annotation

Semantic retrieval

Processing and integration of multilingual and multimodal data in a cloud-based PACS/RIS system

Conclusions

Semantic annotation

Semantic retrieval

Processing and integration of multilingual and multimodal data in a cloud-based PACS/RIS system

Multimodal

Multilingual

Characterization of resources

External resources

Similar cases

•Evaluate different relevance models for the semantic retrieval.

- •Evaluate different relevance models for the semantic retrieval.
- •Validate our techniques using the datasets provided by ImageClef and others, and compare the results with other proposals.

- •Extend the cloud-based ActualMed PACS system with new functionalities
 - Semantic annotation of reports and radiographic images

- •Extend the cloud-based ActualMed PACS system with new functionalities
 - Semantic annotation of reports and radiographic images
 - Semantic indexing of resources in the PACS/RIS

- •Extend the cloud-based ActualMed PACS system with new functionalities
 - Semantic annotation of reports and radiographic images
 - Semantic indexing of resources in the PACS/RIS
 - Semantic search of radiologic resources similar to a given one

- •Extend the cloud-based ActualMed PACS system with new functionalities
 - Semantic annotation of reports and radiographic images
 - Semantic indexing of resources in the PACS/RIS
 - Semantic search of radiologic resources similar to a given one
 - Bibliographic search related with a radiology resource

- •Extend the cloud-based ActualMed PACS system with new functionalities
 - Semantic annotation of reports and radiographic images
 - Semantic indexing of resources in the PACS/RIS
 - Semantic search of radiologic resources similar to a given one
 - Bibliographic search related with a radiology resource
 - Integration and visualization of all the resources

Semantic discovery of resources in cloud-based PACS/RIS systems

Thank you!